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. Ahrtrert. !E !he decnmp~si!ior! a copro&c! i'? !he direct pr0d.a of !eo jireduciLI!p 
representation spaces of the quantum enyeloping algebra U,sl(Z), the mixed representation, 
reducible but indecomposable, appears when q is a root ofunity. I n  this paper, the necessary 
and sufficient condition for mixture of two irreducible representations are presented, the 
quantum Clebsch-Gordan coefficients which are neither all vanishing nor divergent for 
the non-generic q values are defined, and the method for computing the new states are 
discussed in Some detail. 

1. Introduction 

The quantum enveloping algebras U q 9  were firstly presented [ 11 as a tool for solving 
the Yang-Baxter equation [2] which plays a crucial role in some completely integrable 
statistical systems, and now they draw the increasing interests of theoretical physicists 
and mathematicians. The properties of tJqY for the generic q values are studied quite 
well, but the theory for the non-generic values where q is a root of unity is in the 
preliminary stage [3-5]. However, all the irreducible representations ( IR)  of U, sl(2) 
for the non-generic q values are known very well. 

Recently, from the study of an XXZ spin chain model [6,7], the structure of the 
type I representations which are reducible but indecomposable was studied. The 

are several problems that should be studied further. Among them, the sufficient 
condition, the new states, and the quantum Clebsch-Gordan ( ~ c G )  coefficients for the 
non-generic q values are the most urgent ones. In this paper, we are going to study 
those problems in the decomposition of a coproduct in the direct product of two 
irreducible representation ( IR)  spaces for U, sI(2) in detail. 

of another IR when q goes to a non-generic value. When it occurs, we call that two 
states are degenerate and two IRS are mixed. In  this paper we will present the mixed 
condition of two IRS in the decomposition of a coproduct and the method for computing 
the new states appearing due to the degenerate states. The ~ C G  coefficients for the 
non-generic q values will be studied in some detail. 

. .~~~"""- .  ---A:.:-.. F-- ^....nnm"^~ - F * l . -  +....- 1 m..m"n...n.:̂ ..- ... I^ A..-.. I.... .l.--- "ccc"JL,y C"II"L,IU.L L Y L  LLyp'CLLna1LcG U1 L l L G  L J P ' "  1 LcyLc"c 'LL(LL 'Y 'L"  w*> & j . " C L l ,  UUI LIIGLG 
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The plan of this paper is as follows. In section 2 we will show some formulas for 
the non-generic q values which are useful for the later computations. In section 3, we 
will present a theorem for the mixed condition under which the relevant quantum 
Clehsch-Gordan coefficients do coincide with each other for the non-generic q value. 
In this case, some factors in the numerator or denominator of the ~ C Q  coefficients may 
be vanishing, so a new definition is needed to rule out the vanishing or divergent 
hciors, and aiso given in seciion 3. %e proof of ihe iheorem are given in section 4. 
Since some states are degenerate, the method for computing the new states, which 
span together with the old states a type I representation, will be discussed in section 5 .  

2. Formulas for the non-generic q values 

For a given integer p, qo. called a non-generic value, is defined as 
when p is odd 
when p is even. 

¶ : = A =  

Let 

(zj 

When q =qo we denote [ m ]  as [ m ] , .  Obviously, 

[ n p l o = O  [ a I o + O  o<a<p. (3) 
In this paper, if without a special notification, a small latin letter, for example n or p 
etc denotes a non-negative integer, and a small greek letter, for example a: denotes a 
non-negative integer less than p :  0 s a c p .  

It is easy to check the following useful formulas for q = qo 

From (4) we can show 

["U'] =(-A)" 
0 

where 

- [nl! - [n ] [n - I ] .  . . [ n - m + l l  
[ m l !  [ m ] ! [ n - m ] !  

[ m ] !  = [ m ] [ m  -11.. . [ I ]  [ 0 ] ! = 1  [ - n ] ! + c c  

and the subscript 0 denotes q = qo.  
In terms of the factorization method 

we have 

Generallv. we obtain 
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Now, we are going to show formulas on derivatives with respect to q denoted by 
prime. Because 

[np+n] '= 

= ( 4 2 -  l)-'{(np+.)(q""+" + q-"P-")-[np+n][2]} 
and 

q- + q-= 
9-90 qa  - q-= 

=-lim 1 s a  s p - 1  qp-* + 9-p+m 
4*qo qP--  - q-P+-  
lim 

we have 

2npA" 
lim [ np]' = - 
9*90 q;-1 

From ( 1 1 )  we have 

( 1 2 )  becomes vanishing when p = p -  1 owing to (10).  Furthermore, because of (7) we 
have 

From (12) and (13), we obtain the following useful formulas: 

[ ( n  - m ) p  - U] '  [ mp+ U ] '  

m p + p  9 - 4 0 u = ~  ( [ ( n - m ) p - u ]  [ m p + u ]  
- lim-In[ d np-1 ] = l i m  

q-qOdq 

lim --In[ d np+a ] 
q-sodq m p + p  
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where a 3 p, and 

where a <p. 

symbol lim,,+%. 
Hereafter we will say 'when q goes to 40' or 'when q = q; to replace the limit 

3. Mixed condition 

For the generic q values, the coproduct AY in the direct product of two IR spaces of 
U, sl(2) is a reducible representation and can be reduced by the quantum Clebsch- 
Gordan matrix which was computed explicitly in [8,9].  

1 " ( A ~ ) m ( M - m l m , ( ~ , - ~ , l ( ~ l d " ) m , ( M , - ~ , l J ~ , =  ( C l d " ) m ( M - m l J M ( ~ ' , ) M M ,  (16) 

where J = j ,  + j,, j ,  + j ,  - 1, . . . ,I j ,  - j2[.  The states in the IR spaces can be combined 
by ~ C G  coefficients 

(17) 

. .  

. .  . .  

IJM) = E  l j lm ) l j 2 (M - m))(c$j%(M-m)JM. 
m 

When q goes to the non-generic value qo (see ( I ) ) ,  some states JJ'M) and J I M )  
may coincide with each other. In this section we are going to show the mixed condition. 

For the non-generic q values, the normalization of a state is not important because 
some states may be nilpotent (a zero norm). In this case Lusztig's representation [3 ]  
may be more convenient: 

e l j ( m - 1 ) ) = t j + m l l j m )  el j j )  = 0 

f l j ( m + l ) ) = [ j - m l l j m )  
h I jm )  = 2m I j m )  

f li -A = 0 

In this representation, the ~ C G  coefficients are as follows [8,9] 

(CF)mO-miJM 

x [ j l  + m ] ! [  j l  - m] ! [ j , +  M - m ] ! [ j 2 -  M +  m ] !  

x { [ n ] ! [ j ,  - m - n ] ! [ j 2 + M -  m - n l ! [ j l + j 2 -  J -  n l !  

(-l)"q"(J+'l+'~+l' 

(19) 

x [ J - j ,  - M  + m + n ] ! [ J  - j2+ m + n] ! } - '  

[ j l + j 2 - J ] ! [ j , - j , + J ] ! [ - j  
[ j l  + j ,  + J + I]! A(Jl.i2J) = [ 
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where AI is introduced to avoid divergence or all vanish of q~~ coefficients such that 
the state IJM) exists. The explicit form of A, will be given later. 

The mixed condition of two IRS 0:' and D: is a condition under which, when 
9 =  qo, I J ' M ) = c l J M ) ,  where c is a constant. Without loss of generality, we assume 
that j l  3 j 2  and J ' >  J. Since elJJ) = 0 and ( J ' J j JJ )  = 0 for the generic 9 values, we obtain 
from IJ'J) = c lJJ )  when q goes to qO, 

lim elJ'J) = lim [ J ' + J +  l ] IJ ' (J+ 1)) = 0 
4-40 4-40 

that just is the necessary condition for mixture obtained in the XXZ spin chain model 

j ' + i + 1 = 0  mod p. (iOj 
[6,71: 

Introduce the following notations: 

OS j ,  - j 2  = sp + y 2j2 = up+ w 

J ' = f p + q  J =  ( I -  f ) p -  '1 - 1 <J' 
where both y and q are integers or half of odd integers spontaneously because j l  and 
j ,  may be an integer or half of an odd interger, respectively. Now, the mixed condition 
is shown in the theorem. 

Theorem. In the decomposition of the coproduct AV, the necessary and sufficient 
condition for mixture of two IRS D: and D: is as follows: 

21 if q <  y < p - q  
2 f + l  if ( p -  1)/2< q < y or y < ( p  - 1)/2< q < p -  y. 

We will prove the theorem in the next section. Here, we are going to give some 

At first, it is easy to check that (22) are equivalent to the following condition 
remarks. 

J ' =  f p +  q J = ( l - t ) p - q - l  0 s q < ( p  - 1 ) / 2  
21 if q < y < p - q  
2 f + l  

I = (  
if q 3 y or p -  q s y. 

But, we will use the former form in this paper. 
Secondly, since J'> J, it is only needed to prove that when 9 goes to qo the state 

IJJ)  coincides with the state I J ' J )  up to a constant, i.e., when 9 goes to q0 the following 
ratin -R, should he independent of m. 

The coincidence of the rest states can be proved by the lowering operator1: 

of QCG coefficients. AI is defined as follows: 
At last, we introduced a factor A, in (19) in order to avoid divergence or all vanish 
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and those obtained by replacing J'U J, where the relation between J and J' is given 
in (22). We assume J ' = J  when 7 = ( p - 1 ) / 2  or q = p - 1 / 2 .  Also,we have 

0 j l  -m I j ,  + J - J' - m n = max 

Since J - j ,  < m S j ,  , we have 
J +j2 - j ,  < J + j 2  - m - n < J' + j ,  - j ,  
j2+ Y - j ,  = ( t  - s ) p +  7 - y 

j 2 +  J - j ,  = ( I -  t - s ) p  - 7 - y -  1. 

!n nthcr words, condition (22) guarantees tha t  there is a common r in the following 
three formulas 

j 2 i  J' - j ,  = rp + $, j,+ J - j ,  = r p + p o  
j2+ J - m - n  = r p i p  (26a) 

if ?7> y 

t - s - 1  if 7 < y. 
os pas p s PI < p  

It is the key point for proving the theorem that there exists a common r which is 
independent of m and n. Since p ,  - P o  = J'- J,  from (26) we have 

(27) O <  J ' -  J =  (I < p .  

Because J + j , - j 2 = J ' + J - ( J ' + j 2 - j l ) = ( l - r ) p - p l - l ,  and when q goes to qo 
r 2ji i 

LJ'+j2-jI 1 + O  
i f p S o  

i f p , > w  J' +j, - j ,  
the non-vanishing components of (CP),,,(,-,,,),, are finite and have the following 
values of m: 

(n - l ) p +  w < m - J + j 2 S  n p + p ,  
np + w c; m - J + j 2  

if $ , G O  

if p ,  > o. (28) np +PI 
Except for the case o = P I ,  those m satisfying (28) are separated into several groups 
with the higher bound mh and the lower bound m,: 

, I  i. + . ... m. n + I  =n mod p I* i,+ ( J  - m,)+  1 = 0 mod v 

For the case w = & ,  all the components (Cjdk),"(,-,"),, with J - j , S m < j , ,  when 
q = go, are nonvanishing. 
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4. Proof of the theorem 

In this section we are going to prove that when q goes to qo the ratio B,  defined in 
(23) is independent of m. From (25) we have 

From ( s a )  we have 

BY making use of an identity [ 9 , 1 0 ]  

we obtain 

Therefore, when q goes to qo the ratio B, tends to a limit B independent of m :  

(34a)  Iim 8, = 5 
'1-90 

If there is no common r in  (26), i.e., J ' + j 2 - j ,  = rp + P I ,  but J + j 2 - j l  = ( r -  i)p+p,, 
(31)  as well as Iimq+qo B, would obviously depend on m such that IJ'J) and IJJ) 
wol?!d EQ? CQi!Xid. !" each O!hC:. 

There is a problem in the above proof. Equation (34) is deduced from (31), where 
we neglected the term proportional to ( q  - 4 0 ) .  It is allowed only when 
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Owing to (9) and 

j l  +jz - J = 2jz - ( j ,  + J - j , )  =(U - r ) p  + ( w  - P o )  
j l  + j z  - J'= (U - r ) p  + ( w  -PI )  

P o < w < P ,  (36 )  

(35)  holds only when w a PI or w < P o .  Now, we discuss the case 

where 

[ j l + j 2 - J  ]-[PI. 
j ,  + j 2  - J'  (37)  

For this case we separate the values of m, J-j2=s m s j , ,  into two groups: m, and 
m2: 

m, = J - j 2 + u , p + f i l  W < P I G P I  
(38)  

From ( 2 8 )  we know that when q = qo, (Cp)m,(J-m,)~~ ZO and (Cp)m2(J-m2)JJ - [ P I .  
By making use of (32a)  and the following identities [9,10] repeatedly, 

m2 = J -j2+ u 2 p + p 2  ~ 2 s w  o r P 2 > P I .  

we obtain 

n 1 1 ( - l )nqn( j ,+ j ,+J '+ l )  [ '  ) I W m  ][ j 2 - J + m  ][ J ' + J  
j ,+j2+J'-n j 2 + J - m - n  

j>+J-m ( j * + J - m ) ( J ' + j , + j ~ + , ) - ( ~ + J J ( J ' - j , + j ~ )  = ( - I )  q 

(39)  rp +pa s n G rp + p, . 
For the case (36)  and m = m ,  the last two factors in the right-hand side of (39)  must 
contain a [ p ]  factor. Now, we are able to prove that for the case (36) 
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Therefore, the ratio B, is also independent of m for the case (36): 

- 
lim B,, = B 
9*40 

5. New states 

In the previous sections we showed that under the condition (22) when q goes to qo 
the state I J J )  coincides with the state IJ’J)  up to a constant. Owing to this coincidence, 
some new states must exist in the linear space spanned by ~ j , m , ) ~ j z m z ) .  The new state 
with the highest weight can be computed by  a limit process 

I J J ) O = x  l j , m ) l j * ( J - m ) ) ( ~ $ ~ ) m i J - m ) J J  
m 

(42) 

where B should be replaced by 
that the new state IJJ), is orthogonal to the states belonging to the other IRS 

for the case (36) .  The definition (42) guarantees 

(J“J 1 JJ)o= 0 J”# J and J’ (43) 

and the normalization factor N can be determined by (44) 

such that 

e lJJ ) ,=  IJ’(J+l)). 

The rest new states IJM), can be computed by [6]  

It is easy to show from the quantum algebraic relations of U, sI(2) that 

h JJM), = 2 M 1 JM)o 

elJM),= [ J + M +  l I I J ( M +  1” JI-M IJ’(M + 1 ) )  r’‘-M-!l 
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At last, we are going to discuss the method of computing (c$~)mlJ-m,,, for the 
three different cases. 

In this case both 
( 9  w 3 P I  

and [ 2J2 ] [ J 2- j , ]  J'+ j2 - j, 
are non-vanishing when q = qo, but some E,. may be vanishing. When it occurs, the 
summation over n is separated into two parts: n ,  and n2 ,  where Bmn1 # 0 and Bmn2 - [ p ]  
when q goes to qo. 

If m does not satisfy (28), (Cp),lJ-,,,lJJ is proportional to [ p ]  so that 

However, for those m satisfying (28), from (42) we have 

and E-' d/dq E ,  can be calculated by (15): 

d J ' +  J -GIn[ Jtz:-j,]-:'n[ J '+ j ,  - j, ] 
+ E - '  2 Bmn, [ n , ( j , + j 2 +  J '+ 

"l 

J ' -  J - j , +  m + n ,  
+-In[ d i, - m ]+Gin[ d 

dq j l - m - n ,  

After the derivative q goes to qn. 
(ii) 6s w <,Bo 
In this case both 

and [ 'JZ ] 
[ I  z- jl 1 J ' +  j ,  - jl 

are vanishing when q = qo. The formulas (46). (47) and (48) will hold for this case 
except for the second and the third terms on the right-hand side of (48) which should 
be replaced by 
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(iii) & , ~ w < / %  
In this case 

[ J +:-j] 

is non-vanishing but 

[ I’+ 2J2 j 2  - j ,  1 
is vanishing when q = q,,. Because limqaq0(Bm2- 6) is, generally, no longer vanishing, 
we have 

where (39) is helpful for calculating d/dq B,, . 
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